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Abstract. One component of the U.S. Federal High Performance Computing and Com-

munications Program (HPCCP) is the establishment of a gigabit network to provide a

communications infrastructure for researchers across the nation. This gigabit network

will provide new services and capabilities, in addition to increased bandwidth, to enable

future applications. An understanding of these applications is necessary to guide the

development of the gigabit network and other high-performance networks of the future.

In this paper we focus on computational aerosciences applications run remotely using the

Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research

Center. We characterize these applications in terms of network-related parameters and

relate user experiences that reveal limitations imposed by the current wide-area network-

ing infrastructure. Then we investigate how the development of a nationwide gigabit

network would enable users of the NAS facility to work in new, more productive ways.

1. Introduction

The objective of the U.S. High Performance Computing and Communications Pro-

gram (HPCCP) [8] is the development of the technology needed to address fundamental

scientific problems, called grand challenges, that require orders of magnitude more com-

putational power than is currently available. Eight federal agencies, including the

National Aeronautics and Space Administration (NASA), are sharing responsibility for

this program.* NASA's participation is focused on grand challenges in computational

aerosciences, earth and space sciences, and remote exploration and experimentation.

A major objective of the HPCCP is the development of scalable, parallel computer

architectures that are capable of sustained terafiops performance. However, in order to

address the grand challenges, it is expected that multidisciplinary teams of scientists will

*The eight federal agencies are Defense Advanced Research Projects Agency (DARPA), Depart-
ment of Energy (DOE), NASA, National Science Foundation (NSF), Department of Commerce
(DOC)/Nafional Institute for Standards and Technology (NIST), DOC/Nafional Oceanic and

Atmospheric Administration (NOAA), Environmental Protection Agency (EPA), and National
Institutes of Health (NIH)/National Library of Medicine (NLM).
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be requiredto collaboratewith oneanotherandwith remotesupercomputingresources.
Accordingly, oneof thetechnologicalcomponentsof theHPCCPis thedevelopmentof a
gigabit backbonenetworkto interconnectthe nation'sresearchers,educators,and com-
puting resources.In addition to increasedbandwidth,the gigabit network will provide
new servicesand capabilitiesthat will enablethe collaborativeway of conductingsci-
encethat is envisionedfor thefuture.

An understanding of application requirements is prerequisite to the development of

future high-performance networks, such as the U.S. gigabit network. Scientific comput-

ing is considered to be one of the driving applications for such networks, because of the

massive volumes of data generated by supercomputer simulations. In this paper we

examine the role of networking to support computational aerosciences applications, in

which computer simulation is used to predict aerodynamic characteristics of aircraft and

aerospace vehicles. We focus, in particular, on computational fluid dynamics (CFD)

applications.

Computational aerosciences is a grand-challenge area of particular importance to

NASA Ames Research Center, since it is coordinating NASA activities in this area.

NASA Ames has been a center for aerodynamics research for many years; some of the

world's largest wind tunnels axe located at this site. In recent years the value of compu-

tational aerosciences (including CFD) in complementing wind-tunnel experimentation

has become widely accepted. An overview of CFD and its role in designing aircraft and

aerospace vehicles via supercomputer simulation is presented by Vaziri [9] and Bailey

[2]. NASA Ames' Numerical Aerodynamic Simulation (NAS) facility, which became

fully operational in 1987, is a supercomputer center dedicated primarily to computational

fluid dynamics. In effect, aircraft configurations are tested by "flying" them in the NAS

supercomputer system, thus reducing the amount of wind-tunnel testing and experimental

flight testing that is required.

The massive amount of data generated by CFD simulations places enormous

demands on both the local-area and wide-area networking infrastructure. Studies in the

literature that address data-communication requirements to support CFD include a 1988

study by Levin et al [6], which projects requirements for local-area network bandwidth at

the NAS facility in the early 1990's, based on expected increases in computer speed; a

1990 paper by Lekashrnan [5], which describes typical CFD problems and their associ-

ated data-transfer requirements; and a 1991 paper by Vaziri [9] which presents data

requirements for scientific visualization.

In this paper we focus on wide-area communications requirements to support

remote users of the NAS facility. We examine the impact of the current wide-area net-

working infrastructure on their work, discuss potential future applications that would be

enabled by the existence of higher performance wide-area networks (such as the gigabit

network being developed in the U.S. as part of the HPCCP), and discuss network services

that would be required to support these applications.
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2. Using the NAS Facility

The NAS facility was established to support research and development for commer-

cial and military aircraft. The facility contains two supercomputers, a Cray-2 and a Cray

Y-MP, which are accessed by users across the nation.

In this section we relate experiences of computational fluid dynamicists who access

the NAS facility via wide-area networks. We spoke with users at NASA Langley

Research Center (LaRC), Hampton, Virginia; NASA Lewis Research Center (LeRC),

Cleveland, Ohio; McDonnell Douglas, St. Louis, Missouri; and Rockwell International,

Los Angeles, California. Besides being some of the heaviest users of the NAS facility,

these users are also representative of the NAS user community in several ways. First,

these locations span the U.S. In addition some of these users are connected to the NAS

facility via multiple T1 links (where a single T1 link provides 1.544 megabit/second

access), while others have only 56 kilobit/second access. Finally, some of the users we

spoke with are researchers, while others are actively involved in aircraft development.

Users were asked to explain how they use resources at the NAS facility, to charac-

terize their applications, to relate networking problems they have encountered in using

the NAS facility, to describe the kinds of applications they envision for the future, and to

describe how they collaborate with others in their NAS-related work. The first three

issues are addressed below; the last two issues are addressed in Section 3. To establish a

background for these discussions, we begin by identifying NAS users and describing the

network infrastructure which supports them.

2.1. Profile of Remote User

The NAS facility is a national resource. Since it became fully operational in 1987,

the number of users has increased steadily. At present there are approximately 1500

users at over 150 sites, including NASA centers, Department of Defense laboratories,

aerospace industries, and universities. During normal working hours there are typically

between 150 and 200 simultaneous users of the NAS supercomputers.

Several of the users that we contacted said that they use the NAS facility daily.

Though supercomputer resources often are also available at their home site, they use the

NAS facility because their local facilities provide insufficient memory to support their

applications. We received conflicting answers when we inquired about past trends and

future projections for using the NAS facility. Some, such as users at McDonnell Doug-

las, said their use of the NAS facility has increased over the years and is likely to con-

tinue to increase. On the other hand, users at NASA LeRC said that their use of the NAS

facility (which initially increased steadily) has leveled off and is likely to decrease next

year because they have recently acquired an on-site supercomputer that has adequate

memory to support some of their applications.

Remote users typically use the same desk-top tools as the local users. In particular

they use the same kind of workstation and the same software visualization packages,

which in fact were developed by personnel at NASA Ames. We discuss the role of visu-

alization and workstations in more detail in section 2.3.
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2.2. Network Infrastructure to Support NAS Users

Recendy the local area network at the NAS facility was upgraded from a combina-

tion of HYPERchannel and Ethernet to a combination of UltraNet, FDDI, and Ethemet.

The UltraNet provides essentially gigabit local-area network capabilities for on-site

users.

Remote users access the NAS facility through various national networks. Users at

other NASA sites and at aerospace industries, i.e., the heaviest off-site users, access the

facility via a NAS-provided network called AEROnet. Users at government laboratories

typically access the facility via the Department-of-Defense-sponsored MILnet, while

users at universities typically access it via the Internet. AEROnet is illustrated in Figure

1. The AEROnet backbone network consists of dedicated T1 links, with multiple T1

links to designated NASA sites. Leaf sites are connected to backbone sites via dedicated

56 kilobit/second links.

The original wide-area network servicing users at other NASA sites and at

aerospace industries was called NASnet; the installation of AEROnet was completed at

the end of 1991. One improvement of AEROnet over NASnet was the upgrade from a

single T1 link to multiple T1 links to designated sites. For a detailed description of

AEROnet, see [1].

2.3. Role of Visualization and Graphics Workstations

Massive volumes of data are generated by computational aerosciences simulations;

it is virtually impossible to comprehend such large amounts of raw data without the aid

of computer visualization, i.e., using graphics and imaging techniques to visualize fluid

flow. Hence, visualization is a basic tool for the computational aeroscientist. Theoreti-

cally, visualization can either be done interactively with the supercomputer or via a

workstation at the user site. However, both insufficient network bandwidth and scarce

supercomputer cycles (in demand for other tasks that require more compute power) make

the latter method more practical at the present [7].

Both local and remote users of the NAS facility use personal high-performance

graphics workstations to interface to the NAS supercomputers. The raw data produced

by a supercomputer simulation, called the solution file, is typically transferred to the user

site for post-processing, analysis, and visualization of the results on the scientist's works-

tation. NAS personnel have developed software packages that enable real-time visualiza-

tion at the user's workstation. For example, PLOT3D, widely used by everyone we con-

tacted, is an interactive graphics program developed by NAS personnel that displays

two-dimensional and three-dimensional CFD data sets. The fact that PLOT3D, which

must be resident at the user's workstation, is designed for a particular vendor's equip-

ment, means that remote users' workstations are typically the same (or, perhaps earlier

versions of the same machine) as those provided for on-site users.
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2.4. Description of Current Applications

As indicated earlier, the NAS facility is dedicated primarily to CFD. In this section

we give a brief introduction to CFD, discuss the general procedure for using the NAS

facility remotely, and characterize user applications in terms of parameters that influence

network performance from the user's perspective.

Fluid flow is described theoretically by the Navier-Stokes equations. In complex

situations it is impossible to obtain exact solutions to these equations; simulation is used

instead to find iterative solutions to approximations of the Navier-Stokes equations. The

first step is to generate a grid to cover the structure and flow field that is being modeled.

The resulting grid points are used in computations during the simulation. Hence, the size

of the job, both in terms of computer resources and network resources that are required,

depends both on the size of the structure being modeled and the granularity of the grid.

Simulations can either model static behavior, i.e., behavior at a single instance of

time, or they can model dynamic behavior, i.e., behavior at successive time instances.

Dynamic modeling is becoming increasingly significant, since it produces a more realis-

tic representation of aerodynamic behavior. Time-accurate solution files, produced when

modeling dynamic behavior, can be quite large, since they include a solution file for each

time instance that is modeled. One user said that time-accurate analyses that he is

currently conducting can include anywhere from 1000 to 10000 time instances.

Computational fluid dynamicists typically run their simulations in batch mode.

However, they work interactively on computers at the NAS facility to edit source code,

monitor their jobs, and do some post-processing of solution files before the data is

transferred back to the user site. One user indicated that most of the researchers at his

organization typically keep a workstation window open on one of the NAS computers for

interactive access.

Relevant files associated with the batch jobs are the source code, the grid file, and

the solution file. The source code and the grid file are prepared at the user site and

transferred once to the NAS facility. Later modifications or editing are done interac-

tively. The solution file is transferred back to the user site after the simulation is com-

pleted. The solution file, in particular, is often very large. Transfer of large CFD data

files can tax the bandwidth capabilities of the current networking infrastructure.

Simulation runs typically take several hours to complete. Various techniques are

used to divide the runs into segments two to three hours long. Users interactively moni-

tor their jobs to check on status and/or to ensure that the program is producing reasonable

results (e.g., results that are converging). Some users indicated that they always keep a

window open on one of the machines at the NAS facility to watch the job queue to deter-

mine when their job is running. Other users described looking at data produced by the

simulation every two or three hours. If this data indicates that there is a problem, then

they interactively modify the source code or grid file and resubmit the job.

At the end of a run, some post-processing may be done before the solution file is

transferred back to the user site. For example, the solution file may be split into smaller

segments before transfer, or only certain portions of the solution file may be selected for
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transfer. Such post-processing is done to reduce the size of the file that must be

transferred over the networks.

Specific applications that the users described to us varied from modeling a single

aircraft component to modeling an entire aircraft. As a result, there is a wide range of

file sizes and run times associated with the various applications. The largest static-

behavior model that was described is a full configuration of the F-18 aircraft, including

part of an inlet duct. There are 3.7 million grid points for the application, the grid file is

160 megabytes, run time is approximately 30 to 50 hours, and the solution file is 170

megabytes.

In contrast to the large file sizes associated with the F-18 application, one user

specified an average solution-file size of 2 to 3 megabytes. Lekashman [5] discusses

steady-state problems whose solution files range in size from 4 kilobits to 32 megabytes,

and a time-accurate problem with 1000 time instances. In addition he specifies 1 million

grid points as being a typical number. A comparison of Lekashman's data, which is

about a year old, to data collected for this study indicates that users continue to work on

increasingly bigger problems that generate more and more data and place increasing

demands on the network infrastructure.

Typical run times stated for applications other than the F-18 aircraft include approx-

imately 10 hours for one problem, and 3 hours per time instance for another problem.

All of the users said that they divide their problem into segments which require 2 to 3

hours to run. Simulation run time, of course, places no demands on the wide-area net-

works servicing the users. However, awareness of the length of the runs adds valuable

perspective when trying to determine a reasonable time frame within which a user's data

should be delivered to his home site after a run is completed. That is, users who are

accustomed to waiting for their runs are likely to be willing to wait for their results. It is

interesting that some users indicated they weren't sure exactly how much time their runs

require. Their normal working procedure is to find an idle terminal, submit their job, go

off to do something else (maybe even leaving overnight), and periodically come back to

check on the run.

Network transfer time varies both with the size of the file being transferred and with

the speed of the network connection. At NASA LaRC, which is connected to the NAS

facility by 4 dedicated T1 lines (providing 6.176 megabit/second access), a user said

transfer time was typically within 1 minute. At NASA LeRC, which enjoys the same

access to the NAS facility as NASA LaRC, a user said transfer time was typically within

10 minutes. At McDonnell Douglas, which has only 56 kilobit/second access, they said

transfer of solution files for the F-18 application can take from 4 to 8 hours; they said

they really don't know for sure, because they don't wait around and watch.

2.5. Coping with Network Deficiencies

The major frustration expressed by users of the NAS facility is turn-around time for

their simulations, because their jobs must wait in the queue for such a long time before

they are run. Most of the users spoke of increased turn-around time over the years,

because of increased usage of the NAS facility.
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Limited bandwidthis themajor causeof network-relateduser frustrations. In fact,

limited bandwidth is one of the reasons why visualization of simulation results is done at

the user's site, rather than with the supercomputer.

Users uniformly experienced frustration when transferring large data sets across the

network. A common observation was that if you need to transfer a large data set, the link

is sure to go down in the middle of the transfer. This complaint came from users with

multiple T1 access, as well as users with 56 kilobit/second access. However, the latter

said they were sure they wouldn't experience so much frustration if they had T1 access.

A user at NASA LeRC, who said that typical solution-file transfer time is approximately

10 minutes, said that it can take hours if there is a problem with the link. Link reliability

is clearly a related issue. An extreme example of this data-transfer/link-reliability prob-

lem involves McDonnell Douglas. When we first contacted them, they were expecting a

call from NAS user services; they were going to request that their data be mailed to them

on tape, because they were so frustrated in trying to transfer it over the network.

Apparently mailing a tape is not uncommon for users with 56 kilobit/second access. One

such user indicated they do this about twice a year, when transferring large files to the

NAS facility.

Users have generally learned to cope with the problem of transferring large data sets

by dividing them into smaller segments before attempting network transfer. This was

done by all the users we contacted.

Network response time is a sporadic problem for some users. For example, one

user, who has 56 kilobit/second access to the NAS facility, related frustrating delays dur-

ing interactive editing sessions using vi. He said that problems of this nature occur

maybe every three weeks, and last for several days in a row before the problem is

corrected. However, in the context of the current mode of operation, network response

time is not nearly as critical a parameter for the user as network bandwidth.

All the users we contacted said they were satisfied with their current mode of

interaction with the NAS facility. Users have successfully devised techniques for coping

with current networking limitations and axe satisfied with the status quo. In fact, it seems

to take considerable energy to introduce new modes of operation. As one user remarked,

users shy away from having to learn a new way of doing things. He indicated that a

guinea pig is needed, who is willing to take the time to learn the new techniques and then

convince the other users that it really isn't so hard, after all. Despite this attitude, all the

users we contacted responded enthusiastically when we described the more collaborative

ways of working that are presented in the next section.

3. Future Applications

The obvious immediate benefit of higher-speed (e.g., gigabit) access to the NAS

facility is faster transfer of large files. However, probably even more significant is the

new way of doing science that gigabit networks will enable. In this section we address

the increased data-transfer requirements of future applications and discuss various types

of collaborative work that will be enabled by the establishment of a nationwide gigabit-

network infrastructure.
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3.1. IncreasedData-Transfer Requirements

As we have seen, solution files are already large enough to place enormous demands

on network bandwidth. One user, who currently has 56-kilobit access to the NAS facil-

ity, said it is impossible for his organization to do 3-D dynamic analyses at present,

because of insufficient network bandwidth to return the resultant solution files. When

asked what kinds of applications users envisioned for the future, they talked of transient-

oscillation and turbulence problems, multi-disciplinary studies, and analyses using more

grid points. All these types of studies will place increasing demands on processing

power, memory capacity, and data-transfer capabilities.

Technological advances that are made in the development of more powerful com-

puters will enable more sophisticated and complex CFD models to be developed. Finer

grid granularity will be possible, models of complete aerospace vehicles will become

possible, and time-accurate simulations will be more prevalent. All these factors will

contribute to the increasing size of solution files, intensifying the need for higher-speed

access to the NAS facility.

One user at an aerospace industry, involved with modeling the full configuration of

the F-18 aircraft, offered the following explanation for recent growth in solution-file size

for static-behavior analyses. He indicated that eighteen months ago, solution files were

about a quarter of their current size. He attributed the increase in size to advances in

grid-generation techniques. He reasoned that if a grid can be generated in a month,

someone will pay for the work to be done; if grid generation takes 6 months, they won't.

He said he doesn't expect a further increase in solution-file size for about 6 months.

3.2. Interactive Visualization

Currently visualization of simulation results is done at the user site after the simula-

tion run is complete. In the future an interactive mode of visualization may be possible,

i.e., while a simulation is in progress, the user may be able to change parameters and

visualize the results on his workstation screen immediately. This is called steering a

simulation.

While the users expressed satisfaction with their current mode of operation, they all

thought interactive visualization would be beneficial. This type of real-time interactive

activity would provide an attractive alternative to examining numerical solution-file data

every two to three hours during a simulation.

The network infrastructure in place today is too slow to support interactive visuali-

zation. Transmission of images is extremely bandwidth intensive. According to Vaziri

[9] an image data set is 1024 X 1280 pixels/frame with 4 bytes/pixel, to give a total of

5.24 megabytes/frame. Animation at a rate of 12.5 frames per second, which Vaziri calls

a motion threshold, requires 65.5 megabytes/second network bandwidth. Flicker-free

animation would require 60 frames/second, or 314 megabytes/second. Even a network

transfer rate of 1 gigabit per second would be inadequate to handle the latter load without

using data compression to reduce the volume of data.
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3.3. Scientific Collaboration

A working hypothesis within the HPCCP is that teams of scientists will be required

to address complex scientific problems of the future. Such teams of scientists are likely

to be located remotely from one another and remotely from the supercomputers they

need to use. Interactive, computer-supported collaboration will be required to enable this

type of activity.

The kind of interactive collaboration envisioned as part of the HPCCP would

represent a new way of working for the users we contacted. Some said they don't really

collaborate at all in their work; others said they collaborate only with scientists within

their organization; still others said they collaborate with people outside their organization

as well. One user said that sometimes his organization sends a person to NASA Ames to

work with on-site personnel. Collaborative tasks in which the users commonly partici-

pate include designing algorithms, coding, analyzing results, and writing joint papers.

The mechanisms used to support these collaborative tasks are telephone calls and face-

to-face meetings (including project-planning and review meetings, as well as working

meetings), along with sharing of computer data files.

When asked about the desirability of collaborative, interactive work while using the

NAS facility, they were all extremely enthused. One user said he thought it was valuable

for two scientists to be able to see the same picture on their workstation screens during a

technical discussion, so that they could easily refer to points of interest. However, when

asked if he would find it useful to include voice capabilities in computer-supported colla-

borative activities, he replied that it would be disruptive in his working environment,

because his desk isn't sufficiently isolated from other workers.

We described a scenario to the users that involved scientists in different locations

simultaneously visualizing a simulation while it is running, with perhaps one scientist

designated to steer the simulation. All the users were genuinely excited about being able

to work in this manner. The number of people involved in a collaboration of this type

was envisioned to be small, according to all the users questioned. One user suggested

that future collaborations would probably involve two sites with two or three people at

each site. Another user suggested three people, perhaps including one at a NASA center

and two from industry or one from industry and representatives from two different

NASA sites; still another suggested that a collaboration would involve two people most

of the time and would probably never involve more than three.

A few suggestions were made for other uses of computer-supported collaboration.

One suggestion, popular with managers, is to use this technique for monthly reviews.

Another, more novel, suggestion is collaborative trouble-shooting involving a scientist

and user-support personnel.

3.4. Multidisciplinary Modeling and Distributed Computing

Several disciplines play a role in aerospace vehicle design and analysis, including

fluid dynamics, chemistry, structural dynamics, propulsion, solid mechanics, control

theory, acoustics, thermodynamics, and combustion. According to Voigt [10] "the
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traditional approachto the design of aerospace vehicles is to treat each discipline

separately and in turn." Both Bailey [2] and Voigt [10] indicate that as future aerospace

vehicle designs are required to satisfy finer and finer tolerances, interactions between the

disciplines listed above must be more tightly coupled.

Comments from the users we contacted confirmed that multidisciplinary modeling

is assuming increasing importance. One user described a current application which con-

sists of a tightly coupled family of codes, with information flowing from one section of

the code into another. The run is divided into segments; results obtained from one seg-

ment are used as input for the next. Another user spoke of using object-oriented program-

ruing to link structures code and CFD code together.

From the above examples, it is clear that current multidisciplinary modeling is gen-

erally not interactive in nature. When asked about the desirability of interactive multidis-

ciplinary modeling, with models developed for different disciplines running simultane-

ously and passing data back and forth, one user said this would be handy now, but would

really be useful in their future study of transient-oscillation issues.

Interactive multidisciplinary modeling is likely to involve distributed computing.

Though several users said that they currently use computers at different locations as they

work on a problem, these computers are not working interactively. For example, one

user at LaRC talked about using results from a run at NAS as input for a subsequent run

at LaRC. As another example, a user described using computers simultaneously at both

NAS and LaRC, but the work is split between the two sites in such a way that the pieces

are completely stand-alone. Future multidisciplinary modeling will involve multiple

computers working on a problem simultaneously, sharing data during the process. One

user envisions a multidisciplinary study using different machines, perhaps at different

geographical locations, dedicated to different disciplinary tasks, e.g., fluids and struc-

tures. At the same time, another machine might be used for readapting grids and perhaps

still another machine might govern the overall activity via an expert system.

4. Networking Requirements to Support Future Applications

Services that have been envisioned for the HPCCP gigabit network, as presented in

[8], include supporting "access to ... large scale distributed computing resources" and

supporting "computationally intensive applications that require real time visualization of

modeling and simulation results, rapid interrogation and retrieval of scientific data from

specialized data bases, remote control of experiments and simulations, and teleconferenc-

ing." These services are clearly required to enable the computational aerosciences appli-

cations presented in the previous section. In this section we investigate specific network-

ing capabilities that are required, using information presented in Sections 2 and 3 to jus-

tify the requirements.
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4.1. Bandwidth Requirements

Bandwidth requirements for the future will be driven both by image transfer and by

transfer of large data sets. As we have seen from Section 2.4 solution-file size for some

current applications akeady exceeds one gigabit, while from Section 3.1 it is clear that

solution files will continue to increase in size in the future. Though users currently cope

with bandwidth limitations by dividing solution files into segments before data transfer, it

is preferable to maintain solution files (including time-accurate solution files) as single

files. Also, with respect to image-transfer requirements, we have seen from Section 3.2

that interactive visualization can easily require multi-megabyte or gigabit bandwidth to

support a single user. To compound the problem, when scientists are collaborating,

several users (probably at different geographical locations) will need to view the same

images simultaneously. Even though the use of data-compression techniques would

reduce this requirement significantly, the bandwidth requirements are still overwhelming.

Since higher-speed links are prohibitively expensive to install as part of AEROnet

at this time, NAS personnel have modified the ftp file transfer program to utilize avail-

able bandwidth more effectively [4,5]. The original Transmission Control Protocol

(TCP) uses a sliding-window flow-control scheme; transmission is possible only while

the window is open. With links that have a high delay-times-bandwidth product, with the

capacity for a lot of data to be in transit at any given time, the window can easily fill up

before any acknowledgements are received. Such a situation would cause data transmis-

sion to be interrupted and network bandwidth to be wasted. The modified protocol,

called mftp, alleviates this problem by allowing the user to specify that multiple data

streams be used in subsequent file transfers. The effective window size then becomes the

actual window size times the number of streams.

The optimal number of data streams is clearly dependent on characteristics of the

link being used. The recommendation in [4] is that 6 or fewer channels should be

sufficient to keep data flowing in a dedicated coast-to-coast T1 link (e.g., NASA Ames to

LaRC or NASA Ames to LeRC). However, processing delays introduced by gateways

limit the improvement in rate of file transfer experienced by users who access the NAS

facility via the Internet.

4.2. Response-time Requirements

Network response time is not currently a major concern for users. They have

adjusted their mode of operation to the expected performance of the network; unless

there is a problem with the link, they have no complaints. However, interactive visuali-

zation, collaborative activities, and distributed computing will all place stringent

demands on network responsiveness.

For example, during interactive visualization, images would need to traverse the

network in near-real time. A user would need to be assured of receiving network support

for sustained high-rate data transfer during an interactive-visualization session. Because

simulation runs are typically so long, it wouldn't make sense to reserve bandwidth to

support interactive visualization during the entire run. However, it would be desirable to

allow the user to schedule either an interactive-visualization session or a collaborative-



-13-

work sessionfor a designatedperiodof time. Thenthenetworkwouldneedto beableto
ensuretheavailability of adequateresourcesto supporttheseactivitiesasscheduled.

4.3. Coordination Requirements

In addition to low-response-time requirements, collaborative work requires syn-

chronization between the collaborators. The network must support multicast to a small

number of locations (probably two or three, according to Section 3.3), along with the

ability to reserve the bandwidth resources to service all the users simultaneously. The

amount of data that is likely to be involved is enormous, since users will want to share

images, as well as textual data.

All collaborators in a collaborative session need to receive the same kind of service

from the network infrastructure. A comparison of experiences from users with multiple

T1 access and those with 56 kilobit/second access to the NAS facility indicates that users

who receive noticeably different qualities of service from the network would not be able

to participate effectively as part of the same collaborative team.

Coordination is also essential to support multidisciplinary modeling and distributed

computing. Data transfers between the various machines in a distributed-computing sys-

tem need to be coordinated, so that program segments are supplied with the proper data

when they need it.

4.4. Requirements for Supporting Diverse Traffic Types

The future computational aerosciences applications presented in Section 3 involve

traffic of many different types, each requiring different kinds of support from the net-

work. For example, interactive visualization will require extremely high bandwidth on a

steady basis during the entire visualization session, while transfer of a single image will

generate a single high-rate burst of data on the network. Low and predictable delivery

time is required to support both interactive visualization and collaborative work sessions,

while immediate delivery of a single image is not so critical. Also, we note that although

users are generally eager to incorporate interactive visualization, scientific collaboration,

and multidisciplinary modeling into their working environment, the kinds of traffic asso-

ciated with current activities must still be supported by the network. For example, the

transfer of large solution files will still be important. Also, users will continue to expect

support for electronic mail and for the interactive editing of files. Network protocols of

the future must be able to provide all of these types of traffic with the services they

require.

Though current networks already handle varying traffic types, the differences

between types (and the services they require from the network) will be magnified as data

sets become larger and response-time requirements become more stringent. According to

McCormick et al [7], networking must undergo a fundamental change in order to support

interactive visualization and modeling adequately. The claim is made that the network

must be a visualization-based network, rather than being optimized for efficient transmis-

sion of textual data, and that new protocols must be developed accordingly.
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Someactualmeasurementsof traffic at the NAS facility, made using a program

written by Greg Chesson [3] to monitor computer traffic, illustrate the current mix of

traffic handled by the NAS networking infrastructure. Table 1 presents statistics that

were collected over a 20-minute time period on a user-oriented local-area network at the

NAS facility. For each packet length (or range of lengths if the number of packets of

each individual length in this range accounts for less than 1% of the total bandwidth),

Table 1 lists the percentage of the total number of packets that are of that length and the

percentage of the total bandwidth that is used by those packets. Note the large number of

minimum-length 60-byte TCP/IP packets (which constitute a small percentage of the

overall bandwidth) and the small number of very large packets (over 8000 bytes), which

constitute a significant percentage of the overall bandwidth. Based on user information,

it is likely that these large packets represent solution-file transfers from one machine to

another, or to mass storage. For example, one user described moving a solution file to a

particular machine at the NAS facility for post-processing before transferring the data

back to his home site.

Although Chesson warns that many of the packets that are less than 200 bytes long

are either acknowledgements or control packets, it is clear that interactive traffic is also a

significant percentage of overall bandwidth. In fact Chesson indicates that the statistics

collected on the NAS network follow the same general pattern of statistics collected on

general-purpose networks.

Table 1. Traffic Measurements

Packet Length (Bytes) % of Total Packets % of Total Bandwidth

60

61-97

98

99-125

126

127-137

138

139-565

566

567-1077

1078

1079-1513

1514

1515-8299

8300

8312

41.4

7.0

4.4

4.8

5.9

1.4

4.2

12.2

5.7

2.6

5.2

.5

2.5

.7

1.1

.3

6.6

1.4

1.2

1.4

2.0

.5

1.5

6.1

8.5

5.8

14.8

1.8

10.1

7.6

24.8

5.6
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5. Conclusion

High-performance networks, in conjunction with the development of more powerful

computers and improvements in visualization techniques, will enable computational

aerosciences applications of the future. In this paper we examined the networking infras-

tructure which provides remote access to the NAS facility located at NASA Ames

Research Center. We presented recent experiences of some of the current users and we

discussed possible future CFD applications. Finally, we derived networking require-

ments to support these future applications.

AEROnet, the wide-area network which provides access to the NAS facility for its

heaviest off-site users, supports a homogeneous environment. Since it is a special-

purpose network, dedicated to the support of the NAS facility, application requirements

can be specified in detail. Also, users all have the same local working environment; they

conduct their work in basically the same way, they all use the same kind of workstation,

and they all use the same visualization tools and software packages. All these factors

make it easier to upgrade AEROnet to support the types of applications presented herein,

than to enhance the performance of a general-purpose network. Nevertheless, experi-

ences within this limited community should be useful in the more general context.

It is clear that today's networks do not offer the capabilities to support the future

computational aerosciences applications that are presented in this paper. Although users

with multiple T1 access to the NAS facility do not experience the frustrations expressed

by those with only 56-kilobit/second access, their mode of operation is nevertheless res-

tricted by current network limitations. Future plans for upgrade of AEROnet include the

upgrade of some of the 56-kilobit/second lines to T1 and possibly upgrading the higher-

speed links to T3. Eventual upgrade to gigabit rates is being considered, but is not feasi-

ble in the near future because of the expense.

We have shown that gigabit networks are necessary to enable interactive visualiza-

tion and scientific collaboration. Although we have identified general networking

requirements to support these applications, experimentation is needed to explore various

protocols and implementation techniques to determine how to satisfy them. Several

organizations within the Bay Area are planning to establish a Bay Area gigabit testbed as

part of the HPCCP gigabit-network development. At NASA Ames we hope to use this

testbed to experiment with implementing the types of applications that are described in

Section 3 of this paper.
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